Maximality of Sums of Two Maximal Monotone Operators in General Banach Space
نویسندگان
چکیده
We combine methods from convex analysis, based on a function of Simon Fitzpatrick, with a fine recent idea due to Voisei, to prove maximality of the sum of two maximal monotone operators in Banach space under various natural transversality conditions.
منابع مشابه
Maximality of Sums of Two Maximal Monotone Operators
We use methods from convex analysis convex, relying on an ingenious function of Simon Fitzpatrick, to prove maximality of the sum of two maximal monotone operators on reflexive Banach space under weak transversality conditions.
متن کاملMaximality of Monotone Operators in General Banach Space
We establish maximality of the sum of two maximal monotone operators in general Banach space, assuming only the Rockafellar qualification assumption.
متن کاملOn the Maximal Extensions of Monotone Operators and Criteria for Maximality
Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality and pre-maximality issues. This Paper is D...
متن کاملOn the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کامل